Tuesday, 11 July 2017

Constante De Tempo Médio Em Movimento


Vs simples. Médias móveis exponentes As médias móveis são mais do que o estudo de uma sequência de números na ordem sucessiva. Os primeiros praticantes da análise de séries temporais estavam realmente mais preocupados com os números das séries temporais individuais do que com a interpolação desses dados. Interpolação. Sob a forma de teorias e análises de probabilidade, vieram muito mais tarde, à medida que os padrões foram desenvolvidos e as correlações descobertas. Uma vez entendida, várias curvas e linhas moldadas foram desenhadas ao longo da série temporal em uma tentativa de prever onde os pontos de dados podem ir. Estes são agora considerados métodos básicos atualmente utilizados pelos comerciantes de análise técnica. A análise de gráficos pode ser rastreada até o Japão do século 18, no entanto, como e quando as médias móveis foram aplicadas pela primeira vez para os preços de mercado, continua sendo um mistério. Em geral, entende-se que as médias móveis simples (SMA) foram usadas muito antes das médias móveis exponenciais (EMA), porque as EMAs são construídas na estrutura SMA e o contínuo SMA foi mais facilmente compreendido para fins de traçado e rastreamento. (Você gostaria de um pouco de fundo de leitura) Verificando as médias móveis: o que são) Média móvel simples (SMA) As médias móveis simples se tornaram o método preferido para rastrear os preços do mercado porque são rápidos em calcular e fácil de entender. Os praticantes do mercado precoce operaram sem o uso das métricas de gráfico sofisticadas em uso hoje, então eles dependeram principalmente dos preços do mercado como seus únicos guias. Eles calcularam os preços do mercado à mão, e representaram esses preços para denotar tendências e direção do mercado. Este processo foi bastante tedioso, mas provou ser bastante lucrativo com a confirmação de novos estudos. Para calcular uma média móvel simples de 10 dias, basta adicionar os preços de fechamento dos últimos 10 dias e dividir por 10. A média móvel de 20 dias é calculada adicionando os preços de fechamento ao longo de um período de 20 dias e dividindo em 20, e em breve. Esta fórmula não é apenas baseada em preços de fechamento, mas o produto é um meio de preços - um subconjunto. As médias móveis são denominadas em movimento porque o grupo de preços utilizado no cálculo se move de acordo com o ponto do gráfico. Isso significa que os dias antigos são descartados a favor de novos dias de fechamento, portanto, um novo cálculo sempre é necessário, correspondente ao prazo da média empregada. Assim, uma média de 10 dias é recalculada adicionando o novo dia e caindo no 10º dia e o nono dia é descartado no segundo dia. (Para obter mais informações sobre como os gráficos são usados ​​na negociação de divisas, consulte o nosso Passo a passo básico do gráfico.) Média móvel exponencial (EMA) A média móvel exponencial foi refinada e mais comumente usada desde a década de 1960, graças a experimentos de praticantes anteriores com o computador. A nova EMA se concentraria mais nos preços mais recentes do que em uma longa série de pontos de dados, como a média móvel simples exigida. EMA atual ((Preço (atual) - EMA anterior)) X multiplicador) EMA anterior. O fator mais importante é a constante de suavização que 2 (1N) onde N é o número de dias. Um EMA 2 de 10 dias (101) 18,8 Isso significa que uma EMA de 10 períodos pesa o preço mais recente 18,8, um EMA 9,52 e EMA de 20 dias com um peso de 3,92 no dia mais recente. A EMA funciona ponderando a diferença entre o preço dos períodos atuais e o EMA anterior e adicionando o resultado ao EMA anterior. Quanto menor o período, mais peso se aplica ao preço mais recente. Linhas de montagem Por esses cálculos, os pontos são plotados, revelando uma linha apropriada. As linhas de montagem acima ou abaixo do preço de mercado significam que todas as médias móveis são indicadores de atraso. E são usados ​​principalmente para seguir as tendências. Eles não funcionam bem com os mercados de alcance e os períodos de congestionamento porque as linhas adequadas não indicam uma tendência devido à falta de altos maiores evidentes ou baixos baixos. Além disso, as linhas de ajuste tendem a permanecer constantes sem um toque de direção. Uma linha de montagem ascendente abaixo do mercado significa uma longa, enquanto uma linha apropriada de queda acima do mercado significa um curto. (Para obter um guia completo, leia nosso Tutorial de média móvel.) O objetivo de empregar uma média móvel simples é detectar e medir as tendências, suavizando os dados usando os meios de vários grupos de preços. Uma tendência é manchada e extrapolada em uma previsão. O pressuposto é que os movimentos da tendência anterior continuarão. Para a média móvel simples, uma tendência a longo prazo pode ser encontrada e seguida muito mais fácil do que uma EMA, com uma suposição razoável de que a linha de montagem será mais forte do que uma linha EMA devido ao maior foco nos preços médios. Um EMA é usado para capturar movimentos de tendência mais curtos, devido ao foco nos preços mais recentes. Por este método, uma EMA deve reduzir os atrasos na média móvel simples, de modo que a linha de montagem irá reduzir preços mais perto do que uma média móvel simples. O problema com a EMA é o seguinte: é propenso a quebras de preços, especialmente em mercados rápidos e períodos de volatilidade. O EMA funciona bem até que os preços rompem a linha de montagem. Durante os mercados de maior volatilidade, você poderia considerar aumentar a duração do termo médio móvel. Pode-se até mudar de um EMA para um SMA, uma vez que o SMA suaviza os dados muito melhor do que um EMA devido ao seu foco em meios de longo prazo. Indicadores de evolução da tendência Como indicadores de atraso, as médias móveis servem bem como suporte e linhas de resistência. Se os preços se reduzem abaixo de uma linha de ajuste de 10 dias em uma tendência ascendente, as chances são boas de que a tendência ascendente pode estar diminuindo, ou pelo menos o mercado pode estar se consolidando. Se os preços caírem acima de uma média móvel de 10 dias em uma tendência de baixa. A tendência pode estar diminuindo ou se consolidando. Nesses casos, empregue uma média móvel de 10 e 20 dias em conjunto e espere que a linha de 10 dias atravesse acima ou abaixo da linha de 20 dias. Isso determina a próxima direção de curto prazo para os preços. Para períodos de longo prazo, observe as médias móveis de 100 e 200 dias para direção de longo prazo. Por exemplo, usando as médias móveis de 100 e 200 dias, se a média móvel de 100 dias cruza abaixo da média de 200 dias, é chamada de cruz da morte. E é muito competitivo para os preços. Uma média móvel de 100 dias que atravessa acima de uma média móvel de 200 dias é chamada de cruz dourada. E é muito otimista para os preços. Não importa se um SMA ou um EMA é usado, porque ambos são indicadores de tendência. É apenas a curto prazo que a SMA tem ligeiros desvios de sua contraparte, a EMA. Conclusão As médias móveis são a base da análise de gráficos e séries temporais. As médias móveis simples e as médias móveis exponenciais mais complexas ajudam a visualizar a tendência ao suavizar os movimentos de preços. A análise técnica às vezes é referida como uma arte em vez de uma ciência, que leva anos para dominar. (Saiba mais no nosso Tutorial de Análise Técnica.) Tenho um valor contínuo para o qual a Id gosta de calcular uma média móvel exponencial. Normalmente, Id apenas usa a fórmula padrão para isso: onde S n é a nova média, alfa é o alfa, Y é a amostra e S n-1 é a média anterior. Infelizmente, devido a várias questões, não tenho um tempo de amostra consistente. Eu posso saber que posso provar, no máximo, digamos, uma vez por milissegundo, mas devido a fatores fora do meu controle, talvez não consiga tirar uma amostra por vários milissegundos por vez. Um caso provavelmente mais comum, no entanto, é que eu amostras simples um pouco cedo ou tarde: em vez de amostragem a 0, 1 e 2 ms. Eu amostras em 0, 0.9 e 2.1 ms. Eu antecipo que, independentemente dos atrasos, minha freqüência de amostragem estará longe, muito acima do limite Nyquist, e, portanto, não preciso me preocupar com aliasing. Eu acho que posso lidar com isso de uma maneira mais ou menos razoável ao variar o alfa de forma apropriada, com base no período de tempo desde a última amostra. Parte do meu raciocínio que isso funcionará é que o EMA interpola linearmente entre o ponto de dados anterior e o atual. Se considerarmos o cálculo de uma EMA da seguinte lista de amostras em intervalos t: 0,1,2,3,4. Devemos obter o mesmo resultado se usarmos o intervalo 2t, onde as entradas se tornam 0,2,4, direito, se a EMA assumiu que, em t 2, o valor tinha sido 2 desde t 0. Isso seria o mesmo que o cálculo do intervalo t calculado em 0,2,2,4,4, o que não está fazendo. Ou isso faz sentido? Alguém pode me dizer como variar o alfa apropriadamente. Por favor, mostre seu trabalho. Isto é, Mostre-me a matemática que prova que seu método realmente está fazendo o que é certo. Perguntou Jun 21 09 às 13:05 Você não deve obter o mesmo EMA para diferentes entradas. Pense em EMA como um filtro, a amostragem em 2t é equivalente a amostragem descendente, e o filtro vai dar uma saída diferente. Isso é claro para mim, pois 0,2,4 contém componentes de freqüência mais alta que 0,1,2,3,4. A menos que a questão seja, como eu altero o filtro no tempo para fazer com que ele dê a mesma saída. Talvez eu esteja faltando algo ndash freespace 21 de junho 09 às 15:52 Mas a entrada não é diferente, ela é apenas amostrada com menos frequência. 0,2,4 em intervalos 2t é como 0,, 2,, 4 em intervalos t, onde o indica que a amostra é ignorada ndash Curt Sampson 21 de junho de 09 às 23:45 Esta resposta com base na minha boa compreensão de baixa passagem Filtros (a média móvel exponencial é realmente apenas um filtro de passagem simples de um único polo), mas a minha nebulosa compreensão do que você está procurando. Eu acho que o seguinte é o que você quer: primeiro, você pode simplificar sua equação um pouco (parece mais complicado, mas é mais fácil no código). Vou usar Y para saída e X para entrada (em vez de S para saída e Y para entrada, como você fez). Em segundo lugar, o valor de alpha aqui é igual a 1-e-Deltattau onde Deltat é o tempo entre amostras, e tau é a constante de tempo do filtro passa-baixa. Eu digo igual em citações porque isso funciona bem quando Deltattau é pequeno em comparação com 1, e alpha 1-e-Deltattau asymp Deltattau. (Mas não é muito pequeno: você terá problemas de quantificação e, a menos que você recorra a algumas técnicas exóticas, você geralmente precisa de N bits extras de resolução em sua variável de estado S, onde N - log 2 (alfa).) Para valores maiores de Deltattau O efeito de filtragem começa a desaparecer, até chegar ao ponto em que o alfa é próximo de 1 e você basicamente está apenas atribuindo a entrada para a saída. Isso deve funcionar corretamente com valores variáveis ​​de Deltat (a variação de Deltat não é muito importante, desde que o alfa seja pequeno, caso contrário, você irá encontrar alguns alianças de Nyquist raras, e se você estiver trabalhando em um processador onde a multiplicação É mais barato do que a divisão, ou questões de ponto fixo são importantes, precalcular omega 1tau e considerar tentar aproximar a fórmula para alfa. Se você realmente deseja saber como derivar a fórmula alfa 1-e-Deltattau, considere sua fonte de equação diferencial: qual, quando X é uma função de etapa de unidade, tem a solução Y 1 - e - ttau. Para pequenos valores de Deltat, a derivada pode ser aproximada por DeltaYDeltat, produzindo Y tau DeltaYDeltat X DeltaY (XY) (Deltattau) alfa (XY) e a extrapolação de alfa 1-e-Deltattau vem de tentar combinar o comportamento com o Caso da função do passo da unidade. Você poderia elaborar o quottrying para combinar a parte do comportamento. Compreendo sua solução de tempo contínuo Y 1 - exp (-t47) e sua generalização para uma função escalonada com magnitude x e condição inicial y (0). Mas eu não estou vendo como juntar essas idéias para alcançar seu resultado. Ndash Rhys Ulerich 4 de maio 13 às 22:34 Esta não é uma resposta completa, mas pode ser o começo de uma. É tão longe quanto eu consegui com isso em uma hora ou mais de jogar Im publicando isso como um exemplo do que eu procuro, e talvez seja uma inspiração para outros que trabalham no problema. Eu começo com S 0. Que é a média resultante da média anterior S -1 e da amostra Y 0 tomada em t 0. (T 1 - t 0) é o meu intervalo de amostra e o alfa está configurado para o que for apropriado para esse intervalo de amostra e o período durante o qual eu desejaria a média. Eu considerei o que acontece se eu perder a amostra em t 1 e, em vez disso, tenho que fazer com a amostra Y 2 tomada em t 2. Bem, podemos começar expandindo a equação para ver o que aconteceria se tivéssemos cometido 1: percebo que a série parece se estender infinitamente dessa maneira, porque podemos substituir o S n no lado direito indefinidamente: Ok , Então não é realmente um polinômio (eu tolo), mas se multiplicarmos o termo inicial por um, então vemos um padrão: Hm: é uma série exponencial. Surpresa Quelle Imagine que sai da equação para uma média móvel exponencial Então, de qualquer forma, eu tenho esse x 0 x 1 x 2 x 3. A coisa está indo, e estou seguro de que eu estou cheirando e ou um logaritmo natural dando uma volta por aqui, mas não consigo lembrar de onde eu estava indo antes que eu estivesse sem tempo. Qualquer resposta a esta pergunta, ou qualquer prova de correção de tal resposta, depende muito dos dados que você está medindo. Se suas amostras foram tiradas em t 0 0ms. T 1 0.9ms e t 2 2.1ms. Mas sua escolha de alfa é baseada em intervalos de 1 ms, e, portanto, você quer uma alfa n localmente ajustada. A prova de correção da escolha significaria conhecer os valores da amostra em t1ms e t2ms. Isso leva à questão: você pode interpor seus dados de forma razoável para ter suposições sãs do que os valores intermediários podem ter sido ou você pode mesmo interpolar a média em si. Se nenhum desses é possível, então, até onde eu vejo, a lógica A escolha de um valor intermediário Y (t) é a média calculada mais recentemente. Isto é, Y (t) asymp S n onde n é maxmial tal que t n ltt. Esta escolha tem uma conseqüência simples: deixe o alfa sozinho, independentemente da diferença horária. Se, por outro lado, é possível interpolar seus valores, então isso lhe dará amostras intermediárias de intervalo constante. Por último, se é possível interpolar a própria média, isso tornaria a questão sem sentido. Respondeu Jun 21 09 às 15:08 balpha 9830 26.6k 9679 10 9679 85 9679 117 Eu pensaria que eu posso interpolar meus dados: dado que I39m amostragem em intervalos discretos, já estou fazendo isso com uma EMA padrão, suponha que eu precise Um quotproofquot que mostra que ele funciona, bem como um EMA padrão, que também produzirá um resultado incorreto se os valores não estiverem mudando bastante devagar entre os períodos de amostra. Ndash Curt Sampson 21 de junho 09 às 15:21 Mas isso é o que eu digo: se você considerar a EMA uma interpolação de seus valores, você será feito se você deixar o alfa como é (porque inserir a média mais recente como Y não altera a média) . Se você diz que você precisa de algo que funciona bem como um EMAquot padrão - o que está errado com o original A menos que você tenha mais informações sobre os dados que você está medindo, quaisquer ajustes locais para alfa serão, na melhor das hipóteses, arbitrários. Ndash balpha 9830 21 jun 09 às 15:31 Eu deixaria o valor alfa sozinho e preencheria os dados faltantes. Como você não sabe o que acontece durante o tempo em que você não pode mostrar, você pode preencher essas amostras com 0s ou manter o valor anterior estável e usar esses valores para o EMA. Ou alguma interpolação para trás, uma vez que você tenha uma nova amostra, preencha os valores em falta e recomponha a EMA. O que eu estou tentando conseguir é que você tem uma entrada xn que tem buracos. Não há como contornar o fato de você estar faltando dados. Então, você pode usar uma retenção de ordem zero, ou configurá-la para zero, ou algum tipo de interpolação entre xn e xnM. Onde M é o número de amostras em falta e n o início da lacuna. Possivelmente, mesmo usando valores antes de n. Respondeu 21 de junho de 09 às 13:35 De passar uma hora ou mais por um pouco com as matemáticas para isso, acho que simplesmente variar o alfa realmente me dará a interpolação adequada entre os dois pontos de que você fala, mas em um Muito mais simples. Além disso, acho que a variação do alfa também tratará de forma adequada as amostras colhidas entre os intervalos de amostragem padrão. Em outras palavras, estou procurando o que você descreveu, mas tentando usar matemática para descobrir a maneira simples de fazê-lo. Ndash Curt Sampson 21 de junho 09 às 14:07 Eu não acho que há uma besta tão boa quanto a interpolação quotproper. Você simplesmente não sabe o que aconteceu no momento em que você não está amostragem. A interpolação boa e ruim implica algum conhecimento do que você perdeu, já que você precisa medir contra isso para julgar se uma interpolação é boa ou ruim. Embora seja dito, você pode colocar restrições, ou seja, com aceleração máxima, velocidade, etc. Eu acho que se você sabe como modelar os dados que faltam, então você apenas modelaria os dados ausentes, então aplique o algoritmo EMA sem mudança, em vez disso Do que mudar alfa. Apenas meu 2c :) ndash freespace 21 de junho 09 às 14:17 Isto é exatamente o que eu estava recebendo na minha edição para a pergunta há 15 minutos: você simplesmente não sabe o que aconteceu no momento em que você não está amostragem, mas isso é verdade Mesmo se você provar em cada intervalo designado. Assim, a minha contemplação de Nyquist: enquanto você sabe que a forma de onda não altera as direções mais do que todas as amostras, o intervalo de amostra real não deve ser importante e pode variar. A equação EMA parece-me exatamente calcular como se a forma de onda mudasse linearmente do último valor de amostra para o atual. Ndash Curt Sampson 21 de junho 09 às 14:26 Eu não acho que isso seja verdade. O teorema de Nyquist exige um mínimo de 2 amostras por período para poder identificar o sinal de forma exclusiva. Se você não fizer isso, você obtém aliasing. Seria o mesmo que a amostragem como fs1 por um tempo, então fs2, então voltar para fs1, e você obtém aliasing nos dados quando você amostra com fs2 se fs2 estiver abaixo do limite de Nyquist. Eu também devo confessar que não entendo o que você quer dizer com quotwaveform mudanças linearmente da última amostra para onequot atual. Você poderia explicar Cheers, Steve? Ndash freespace Jun 21 09 às 14:36 ​​Isto é semelhante a um problema aberto na minha lista de tarefas. Eu tenho um esquema elaborado até certo ponto, mas não tenho trabalho matemático para apoiar esta sugestão ainda. Atualização do sumário do amplificador: Gostaria de manter o fator de suavização (alfa) independente do fator de compensação (que eu me refiro como beta aqui). A excelente resposta já aceita aqui é excelente para mim. Se você também pode medir o tempo desde a última amostra (em múltiplos arredondados de seu tempo de amostragem constante - então 7.8 ms uma vez que a última amostra seria de 8 unidades), isso poderia ser usado para aplicar várias vezes o alisamento. Aplique a fórmula 8 vezes neste caso. Você efetivamente fez um alisamento mais inclinado para o valor atual. Para obter um melhor alisamento, precisamos ajustar o alfa ao aplicar a fórmula 8 vezes no caso anterior. O que essa aproximação de suavização perderá. Já faltou 7 amostras no exemplo acima. Isso foi aproximado no passo 1 com uma re-aplicação achatada do valor atual 7 vezes adicionais. Se definimos um fator de aproximação beta que será aplicado junto com o alfa (Como alfabeta em vez de apenas alfa), estaremos assumindo que as 7 amostras perdidas estavam mudando suavemente entre os valores de amostra anteriores e atuais. Respondeu 21 de junho 09 às 13:35 Eu pensei sobre isso, mas um pouco de amaldiçoamento com a matemática me levou ao ponto em que eu acredito que, ao invés de aplicar a fórmula oito vezes com o valor da amostra, posso fazer um cálculo De um novo alfa que me permitirá aplicar a fórmula uma vez e me dar o mesmo resultado. Além disso, isso trataria automaticamente a questão de amostras compensadas de tempos de amostra exatos. Ndash Curt Sampson 21 de junho 09 às 13:47 O único aplicativo está bem. O que ainda não tenho certeza é o quanto é boa a aproximação dos 7 valores em falta. Se o movimento contínuo faz com que o valor flui muito nos 8 milésimos de segundo, as aproximações podem estar bastante fora da realidade. Mas, então, se você estiver amostragem a 1 ms (resolução mais alta, excluindo as amostras atrasadas), você já descobriu que o jitter dentro de 1 ms não é relevante. Esse raciocínio funciona para você (eu ainda estou tentando me convencer). Ndash nik Jun 21 09 às 14:08 Direita. Esse é o fator beta da minha descrição. Um fator beta seria computado com base no intervalo de diferença e nas amostras atual e anterior. O novo alfa será (alfabeta), mas será usado apenas para essa amostra. Enquanto você parece ser o alfa na fórmula, eu tende para o alfa constante (fator de suavização) e um beta calculado de forma independente (um fator de sintonia) que compensa amostras perdidas agora. Ndash nik 21 de junho de 09 às 15: 23 Na prática, a média móvel proporcionará uma boa estimativa da média das séries temporais se a média for constante ou se mudar lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo significará os efeitos da variabilidade. O objetivo de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra as séries temporais usadas para ilustração juntamente com a demanda média da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ela aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então, torna-se constante novamente. Os dados são simulados adicionando à média, um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que em qualquer momento, apenas os dados passados ​​são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas em conjunto com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas médias móveis para a direita por períodos. Uma conclusão é imediatamente aparente da figura. Para as três estimativas, a média móvel está atrasada por trás da tendência linear, com o atraso crescente com m. O atraso é a distância entre o modelo e a estimativa na dimensão temporal. Por causa do atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um momento específico no valor médio do modelo e o valor médio previsto pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série de crescimento contínuo com tendência a. Os valores de lag e tendência do estimador da média são dados nas equações abaixo. As curvas de exemplo não combinam essas equações porque o modelo de exemplo não está aumentando continuamente, antes ele começa como uma constante, muda para uma tendência e depois se torna constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada pela mudança das curvas para a direita. O atraso e o desvio aumentam proporcionalmente. As equações abaixo indicam o atraso e a polarização de um período de previsão para o futuro em relação aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel é baseado na suposição de uma média constante, e o exemplo tem uma tendência linear na média durante uma parcela do período de estudo. Uma vez que as séries em tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para esses resultados. Também podemos concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menores. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero e a variância do erro é composta por um termo que é uma função e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de observações m, assumindo que os dados provêm de uma população com um meio constante. Este termo é minimizado fazendo m o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar as previsões sensíveis às mudanças, queremos m o mais pequeno possível (1), mas isso aumenta a variação do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo suplemento para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Comparadas com a tabela acima, os índices do período são deslocados em -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro médio móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto feito a partir da média móvel no tempo 0 é 11,1. O erro então é -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente.

No comments:

Post a Comment